If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-8=0
a = 1; b = 24; c = -8;
Δ = b2-4ac
Δ = 242-4·1·(-8)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{38}}{2*1}=\frac{-24-4\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{38}}{2*1}=\frac{-24+4\sqrt{38}}{2} $
| 32^x=16^2 | | 2y+1/6=8/3 | | -5+m/4=-1 | | -5(+1x)=-50 | | (x+2)^2+(-2-0.5)^12=16 | | r–1=–1 | | 3x+10.5=6.5+2.5 | | m÷5=12 | | 19x+3x²+2x-x²-10+5x²= | | (14x-14)=(6x+36) | | j−–8=16 | | 5x+15=200 | | x÷9+21=24 | | 4(0.2x−5)=12 | | X+4=3x=4 | | 94=5w+9 | | 3+6x=2.25x+11.25 | | 25=50d | | 19x+3x²+2x-x²-10x+5x²= | | 6x=6600 | | 60x=6500 | | 3+6x=2.25+11.25 | | 6x=6500 | | (n)/(2)+7=22 | | 10-6r=-4r-16 | | 10x=6500 | | X=5;-5x+1 | | 2x=48+34 | | -7-5x=18 | | -1=1/4x+18 | | 5(-x+2)+3x+5=5(−x+2)+3x+5=11 | | 6h-15=-15+6h |